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Abstract. A key problem in visual tracking is how to handle the ambi-
guity in decision to locate the object effectively using the target appear-
ance model with online update. We address this problem by incorporat-
ing sequential clustering and ensemble methods into the tracking system.
In this paper, clustering is used for mining the potential historical struc-
ture in the parameter space and feature space. Then we fuse multiple
weak hypotheses to construct a strong ensemble learner for object track-
ing. Different from previous methods for updating classifier ensemble in a
fixed weak classifier pool frame-to-frame, the proposed ensemble method
is taking three weak hypotheses into consideration: spatial object-part
view, parameter space view, and feature space view. Specially, spatial
object-part view represents the object by a collection of part models
that are spatially related (e.g. tree-structure). Meanwhile, analyzing the
latent group structure in the parameter space and feature space is essen-
tial to take full advantage of the historical data in the tracking process.
Therefore, we propose a novel ensemble algorithm that fuses object-part
predictor, parameter clustered predictors and feature clustered predic-
tors together. Furthermore, the weights of different views are updated
by the relative consistency between weak predictors and final ensemble
tracker. The formulation is tested in a tracking-by-detection implemen-
tation. Extensive comparing experiments on challenging video sequences
demonstrate the robustness and effectiveness of the proposed method.

1 Introduction

Visual tracking has attracted significant attention due to its wide variety of ap-
plications such as terrorist detection, wearable computing and self-driving cars.
Much progress has been made in the last two decades. However designing robust
visual tracking methods is still an open issue. Challenges in visual tracking meth-
ods include no-rigid shape and appearance variations of the object, occlusions,
illumination changes, cluttered scenes, etc [1], [2].

To solve the above problem, a popular approach is to learn a discriminative
appearance model for coping with complicated appearance changes [3]. Typi-
cally, this assumes that the object/non-object discriminative information from
different frames during long-term tracking is generated from a temporally ho-
mogeneous source. However this assumption may not hold in practice, as object
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appearance and environmental conditions vary dynamically over time. In face
of challenging factors, only fitting one updating discriminative model which can
satisfy all cases is unlikely to optimally distinguish an object from its background
through tracking-by-detection methods [4], [5], [6], [7], [8]. Tracking-by-detection
requires training of a classifier for detecting the object in each frame. One com-
mon approach for detector training is to use a detector ensemble framework that
linearly combines the weak classifiers with different associated weights, e.g., [4],
[6]. A larger weight implies that the corresponding weak classifier is more dis-
criminative and thus more useful.

Although most previous online ensemble methods originated from offline al-
gorithms achieve many successes in online visual learning task, there are some
limitations in visual tracking. As noted by Bai et al. [9], the common assump-
tion was that the observed data (examples and their labels) had an unknown
but stationary joint distribution. It may not apply in tracking scenarios where
the appearance of an object can undergo significant changes. Due to the uncer-
tainty in the appearance changes that may occur over time and the difficulty of
estimating the non-stationary distribution of this observed data directly, they
used Bayesian estimation theory to estimate a Dirichlet distribution of clas-
sifier weights. Different from their pre-defined non-stationary distribution and
high computational complexity, we propose a simple and robust cumulative sum
method to model how the different view predictor weights evolve so as to repre-
sent the non-stationary distribution which doesn’t need to satisfy some specific
distribution and is efficient.

At the same time, Grabner and Bischof [6] noted that updating the weights
of online self-learning classifiers through the incoming data without annotation
is difficult. Babenko et al. [5] treated tracking as multiple instance learning prob-
lem. Bai et al. [9] estimated the ensemble weights using Bayesian interpretation
and ensures that the update of the ensemble weights is smooth. Yu et al. [10]
proposed a co-training based approach to continuously label incoming data and
online update a hybrid discriminative and generative model. We consider the
three views of the object-part view, parameter space view and object feature
space view at the same time. They are robust to different cases that object-part
view covers the occlusion, discriminative parameter space view focuses the dif-
ference between the object and the background and the generative object feature
space view handles the variants of the object appearance itself.

Moreover, the tracking problem has a temporal dimension which is not present
in the classification methods [11] or subspace learning methods [12] by the pre-
vious works. We get temporal interval predictors through sequential clustering
so as to better utilize the temporal learned structural information in parameter
space and object appearance space directly.

Our method models three views of predictors whose weights ensemble with a
non-stationary distribution, where their information geometry can be explored
by sequential clustering methods. Our method focus on estimating the state of
the object with three diverse view predictors in temporal dimension, not the
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independent and identically distributed variable in a fixed weak classifier pool.
In summary, our contributions are as follows:

1. We first propose a clustering ensemble tracker with three diverse views of
weak predictors: object-part predictor, parameter space predictor, and feature
space predictor. The different views have specific properties for tracking.

2. The sequential clustering is utilized to estimate the temporal non-stationary
distributions of weak structure predictor in parameter space and appearance
predictor in feature space. Based on sequential clustering theory, it provides a
probabilistic interpretation of which interval structured predictor of the object
are more discriminative.

3. We propose a simple weighting strategy to ensemble different weak pre-
dictors based on the prediction consistency between weak predictors and final
ensemble tracker.

2 Related Work

A tracking-by-detection method usually has two major components: object rep-
resentation and model update. Previous methods employ various object repre-
sentations [13], [6], [5], [7], [14], [15], [8]. Our approach is most related to the
methods that use structured prediction [7], [8].

From the perspective of that the tracked objects are treated as labeled pos-
itive samples and the other as training samples with some structure loss, the
tracking problem can be considered as supervised learning problem in each frame.
Supervised learning algorithms are commonly described as performing the task
of searching through a hypothesis space to find a suitable hypothesis that makes
good prediction for one particular problem. Even if the hypothesis space contains
hypotheses that are very well-suited for object tracking, it may be very difficult
to find a good one to locate the object precisely.

“Ensemble methods” is a machine learning paradigm where multiple (ho-
mogenous/heterogenous) individual learners are trained for the same problem,
e.g., neural network ensemble [16], bootstrap aggregating (bagging) [17], boost-
ing[18], Bayesian model averaging [19], [20], etc. Avidan [4], who was the first to
explicitly apply ensemble methods to tracking-by-detection, extended the work of
[21] by adopting the Adaboost algorithm [18] to combine a set of weak classifiers
maintained with an online update strategy. Along this thread, Grabner et al. [6]
inspired from the online boosting algorithm [22] by introducing feature selection
from a pool of features for weak classifiers. Several other extensions to online
boosting also existed, including the work by Banbenko et al. [5] who adopted
Multiple Instance Learning in designing weak classifiers. In a different approach
[23], Random Forests undergoed online update to grow or discard decision trees
during tracking. Bai et al. [9] treated weight vector as a random variable and
estimate a Dirichlet distribution for ensemble’s weight vector. They all are a bi-
nary classifier realized by an ensemble method and don’t exploit the structured
data properties which can improve the tracking performance significantly, like as
[7], [24]. At the same time, online boosting based trackers [6], [5] only considered
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the parameter state in current time period. Different from them, we explore the
structure of parameter state in parameter space over different time periods in
tracking process.

Zhong et al.[25] considered visual tracking in a weakly supervised learning
scenario where (possibly noisy) labels but no ground truth are provided by mul-
tiple imperfect oracles (i.e., trackers). Kwon and Lee [26] proposed visual tracker
sampler to track a target by searching for the appropriate trackers in each frame.
They are all ensemble methods applied in visual tracking. Unlike these methods,
our method is not a heterogenous method which focuses on the tracker space but
an homogenous approach which there is just one tracker. Due to the trained weak
trackers in historical sequences, our method is more efficient than heterogenous
methods.

Our online ensemble method is most related with online bagging scheme,
in the sense that we adopt random combination of weak classifiers. However,
we characterize the temporal ensemble weight vector as a clustering center and
evolve its distribution with sequential clustering manner. As a result, the final
strong classifier is an expectation of the ensemble with respect to the weight
vector, which is approximated by an average of the ensemble clustering centers.
To the best of our knowledge, in the context of tracking-by-detection, we are
the first to present such an online learning scheme that adopt clustering in
parameter space and object appearance space to characterizes the uncertainty
of a self-learning algorithm.

3 Clustering Ensemble Tracking

In this section, we introduce our tracking algorithm, clustering ensemble tracking
(CET), which is a clustering ensemble based appearance model. We begin with
an overview of our tracking system which includes a description of structure
learning-based part models predictor. We then briefly review the concepts of
sequential clustering and ensemble with temporal weak structure predictors.
Finally, we give our clustering ensemble based tracking algorithm.

3.1 Overview

We illustrate the framework of our tracking system (diagram shown in Fig. 1). At
each frame, our method starts with a structure predictor h(x), several clustering
centers based on historical weight vectors W = {w1, w2, ..wN , ...} of h(x) and in-
put data x. Our method obtains the incremental parameter cluster centers Cp =
{Cp,1, ..., Cp,M} and object appearance cluster centers Co = {Co,1, ..., Co,M}
through sequential clustering method, where there is only one cluster, and then
the number of clusters increases as the change of the input parameter vectors
W or object feature vectors O = {o1, ...oN ...}. Every parameter cluster center
Cp,i and the latest parameter vector wN are treated as the parameters of weak
structure predictors h(x). Meanwhile, each appearance cluster center Co,i evalu-
ates the object candidates through similarity measurement. Then the output of
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Fig. 1. Framework of the proposed clustering ensemble algorithm. Wi represents the
parameter of part models in ith frame. Ci,j denotes clustering center. di,j expresses the
decisions related to Ci,j .

these weak structure predictors h(x) and the degree of similarity with respective
weights l = {l1, l2, l3} are combined to yield the final decision where the object
is. For reducing the computing complexity, the cascade method are adopted in
experiments. The cascade is that using the most stable weak classifier or the
latest classifier rejects most of object candidates and retains a small number of
object candidates which are difficult to predict precisely by one weak classifier
so that multiple weak predictors give a combined solution of higher quality than
any individual solution (empirically proved by [25], [26]).

3.2 Sequential Clustering

In online visual object tracking, the tracked object appearance usually changes
gradually. While there are some various factors such as noise or occlusion or
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fast and abrupt object motion or illumination changes or variations in pose and
scale, the object appearance got from the object location will changes much.
Meanwhile, the weight vector trained through the changed object training sam-
ples varies with the changes of object appearance. Through updating object
appearance model, the classifier can adapt the variation of the object appear-
ance. However, model update itself is not absolutely correct without effective
supervised information. For alleviating the drift problem resulted by degraded
classifier update which comes from incorrectly labeled training samples, we ex-
ploit the structure of the parameter space of the trained weak trackers and the
predicted object appearance space in historical temporal dimension to guarantee
the accuracy of current decision by the final ensemble tracker through sequential
clustering. We will introduce the sequential clustering algorithm as follows.

In basic form, parameter or weight vectors W = {w1, ..., wn} are presented
only once and the number of clusters C = {C1, ..., Cm} is not known a priori. The
common approach is to define the dissimilarity d(xi, Cj) and set the threshold
of dissimilarity Θ and the number of maximum clusters allowed q. The idea is to
assign every newly presented vector to an existing cluster or create a new cluster
for this sample, depending on the distance to the already defined clusters. In the
application of online tracking, the parameter vector changes gradually so that
the threshold Θ and the number q are difficult to set. Here, to avoid the setting
problem above, we create a new cluster using a simple heuristic. As pseudo, the
algorithm works like the following:

Algorithm 1 Sequential clustering

1: Init the first sample as the first cluster Cm = {w1},m = 1;
2: for each wi ∈ {w2, ..., wn} do

3: find the cluster Ck such that min d(wi, Ck);
4: if i mod D == 0 then

5: Create a new cluster Cm = {wi},m = m+ 1;
6: Using K-means clustering algorithm to re-clustering the space of samples w,

K = m+ 1
7: else

8: Add the sample wi to the nearest cluster Ck = {Ck, wi}, while the predicted
object satisfied some update condition.

9: end if

10: end for

As can be seen the algorithm is simple but still quite efficient. Different
choices for the distance function d(wi, Ck) lead to different results. We define:

d(wi, Ck) = 1−
< wi, Ck,c >

||wi||||Ck,c||
(1)

where < A,B >=
∑n

i=1 Ai × Bi is the dot product of two vectors, ||A|| =
√
∑n

i=1(Ai)2, and Ck,c is the average of all vectors in the set Ck. Due to struc-
tured time series property of online tracking, our method creates one new cluster
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after each D interval frames and uses K-means [27] to re-clustering. The sequen-
tial clustering is used in section 3.3.

3.3 Clustering Ensemble Tracker

We adopt the bagging-like method to get the final ensemble results. Bagging
predictors is a method for generating multiple versions of a predictor and using
these to get an aggregated predictor. The aggregation averages over the versions
when predicting a numerical outcome and does a plurality vote when predicting
a class. The multiple versions are formed by making bootstrap replicates of
the learning set and using these as new learning sets. Here, we use the trained
structure predictor in every frame as the basic version of a predictor.

Object-Part Predictor. In our paper, similar to [24], a structured part
models predictor is trained by an online manner based on the tracked object loca-
tions in previous frames. We represent the object bounding box Bi = {xi, wi, hi}
with center location xi = (xi, yi), width wi and height hi. The HOG features
extracted from image I that correspond to locations inside the object bounding
box Bi are extracted to obtain feature vector Φ(I;Bi). The part indicators i ∈ V
where V = {V0, V1, ..., Vn} represents the set of object and object parts. Here,
V0 denotes the object itself. Subsequently, we define a graph G = (V,E) over all
objects m ∈ V that we want to track with edges (m,n) ∈ E between the objects.
The edges in the graph model can be viewed as springs that represent spatial
constraints between the tracked objects. Next, we define the score of a config-
uration S = {P1, ..., P|V |} of multiple tracked parts as the sum of two terms:
(1) an appearance score that sums the similarities between the observed image
features and the classifier weights for all objects and (2) a deformation score that
measures how much a configuration compresses or stretches the springs between
the tracked objects. Different from [8], the weak base predictor is not our focus,
but just part of our method. Mathematically, the score of a configuration Sb is
defined as:

Sb =
∑

i∈V

wT

i Φ(I;Bi) + λ
∑

(m,n)∈E

||(xm − xn)− emn||
2. (2)

Where the parameters wi represent linear weights on the HOG features
for object i, eij is the vector that represents the length and direction of the
spring between objects i and j, the set of all parameters is denoted by Θ =
{w1, ...,w|V|, e1, ..., e|E|}. We treat the parameter λ as a hyper-parameter that
determines the trade-off between the appearance and deformation scores. For re-
ducing the computing complexity, we set m = 0, which means only to compute
the distance between the parts Vi and the root V0 in D(x). We use a passive-
aggressive algorithm to perform the parameter update[28],[24].

Parameter and Feature Clustered Predictor. In this paper, we redefine
the goal of tracking problem as to find the best state that not only using the
current trained classifier in the case where the object is easy to identify (see
Fig. 2(a)), but also exploiting the historical trained classifier through clustering
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Fig. 2. Two confidence maps to decide where object is. The lighter, the more likely
the object is.

ensemble methods in the case where the object is difficult to identify (see Fig.
2(b)). In Fig. 2(a)), the object is easy to decide because other regions’ confi-
dences are much lower than the lighter region so that the object is discriminated
easier from the background. In Fig. 2(b), the background has many regions in
which there are similar confidences as the object so that if the current trained
classifier’s decision is wrong, the tracker will drift to the background. After drift,
the classifier’s update will be wrong. For reducing the decision ambiguities of the
object, we adopt the clustering ensemble method (see sec. 3.2) in the historical
parameter space and object appearance space and use the clustering centers to
make a decision where the object is. To improve the computational efficiency
and robustness, we get the extremal points in the confidence map as the object
candidates. After getting the object candidates, we use the clustering centers as
weak classifiers to vote the best state.

Each cluster center is treated as a sub-weak clustered predictor in ether
discriminative parameter space or generative object appearance space. The score
of one object candidate Bc based on the predictor in parameter space can be
computed:

Sp(Bc) =

Np
∑

i=1

CT
p,iΦ(I;Bc) (3)

where Np is the total number of clusters in parameter space by the end of
the current frame, and Cp,i is the representation of the ith cluster center in
parameter space. The score of one object candidate using the jth predictor in
object parameter space can be mathematically expressed:

Sj
o(Bc) = ρ(Q(BC), Co,j)), (4)

where ρ is euclidean metric function, Q(BC) is object representation directly
extracted from the object candidate bounding box, Co,j is the jth clustering
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center in object feature space. In our experiment, Q(BC) is a vectorization after
resizing the BC to its quarter. The same is to extract feature in object space.

According to the Eq. (2-4), then the final object candidate’s score is:

S = λ1Sb + λ2Sp + λ3So, λ1 + λ2 + λ3 = 1, (5)

where {Sb, Sp, So} are the scores of weak part models predictor, weak param-
eter predictor and weak object appearance predictor and {λ1, λ2, λ3} are their
weights respectively. How to learn the λ is introduced in next section. The final
object location is inferred based on Eq. (5):

B∗ = argmax
Bc

S(Bc), (6)

where the Bc is object bounding box candidates sampled from the search region
near the previous object location.

3.4 Weight Update

Our model updates the weights of three different predictors after the decision
stage in each step, not each frame which doesn’t satisfy the update condition (e.g.
heavily occluded), so that the model can evolve. For each step, after performing
the decision, our method obtains the labels of data predicted by our strong
predictor and the observation of performance of weak view predictors, that is,
the prediction consistency of weak classifiers with respect to the strong classifier,
likely to [9], [29].

The weight distribution is dependent on the accumulative normalized central-
pixel error probability. The accumulative property reflects on the cumulative sum
of observation of relative reliability of each predictor. The normalized central-
pixel error probability is incarnated by normalized probability directly related
to the distance between the object’s center and weak predictor observations’
centers. Mathematically, we have

p(oti|x
t) =

1

Zt

exp(−(oti − xt)2/σ2), (7)

Zt =

n
∑

i

p(oti|x
t) (8)

where oti is the observation state center location of the ith weak predictor in step
t, xt is the predicted object’s center location, Zt is a normalization factor in each
step t, and σ = 25. Each part weight is defined as:

λi =

∑T

t=2 p(o
t
i|x

t)
∑T

t=2 Zt

(9)

which computes relative reliability of each part predictor.
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4 Experiments

For the experiments, publicly available video sequences obtained from [11], [5],
[30], [31] were utilized. Using the sequences, the proposed method (CET) was an-
alyzed and compared with 7 state-of-the-art tracking methods: Multiple Instance
Learning (MIL) [5], Visual tracking decomposition [30], Struck [7], Tracking-
Learning-Detection (TLD) [32], PartTracker(PT) [33], Structure preserving ob-
ject tracking(SPOT) [24], Randomized Ensemble Tracking(RET) [9]. All algo-
rithms are compared in terms of the same initial positions in first frame in [31].

4.1 Implement Details

In all of the experiments, the parameters of our trackers are fixed. The experi-
mental results of MIL, VTD, Struck, TLD are dependent on the public dataset
where the sequences’ ground truth are re-annotated by Wu et al. [31] and some
trackers’ results through the third party appraisal are attached. For fairness, we
adopt the other tracker codes provided by the respective authors in their home-
pages. The binary code of PT is public. We just need to prepare a config file and
then can get their results. The source code of SPOT is published in the website
of zhang and van der Maaten [24]. There is one limitation in SPOT is that the
parts’ initialization for single object tracking is missing in their source code be-
cause it is mainly designed for multiple object tracking. We want to use it as our
base tracker so that it is necessary to initialize the parts. For handleability and
robustness, we divide the object into four parts equally and then complete the
part initialization. The source code of RET is also provided by its authors. MIL
and TLD use the haar-like feature[34] or LBP-like feature which is sensitive to
large illumination illumination, while Struck, VTD, PT, SPOT, RET and CET
are based on edge information or HOG feature [35] that is robust to illumina-
tion and mirror misalignment. We use the given parameter in their code and get
the sequences’ results. In our method, one cluster is initialized newly in every
D = 100 frames. The time complexity is mainly determined by the number of
parts, the clustering computation complexity, feature extraction and the search
region for deciding where object is.

4.2 Quantitative Analysis

The quantitative comparison results with several state-of-the-art trackers and
our tracker (CET) are shown in Fig. 3 and Table 1. We follow the same evaluation
protocol proposed in [31]. Overall, our method outperforms them consistently
in the view of overall performance (see Fig. 3). In addition, Fig. 4 shows the
comparison on different subsets such as occlusion and illumination subsets. The
quantitative results are shown in Table 1. From the table, CET achieves the
competitive performances well against the other state-of-the-art algorithms on all
tested sequences. As summarized in Table 1, our method (CET) most accurately
tracked the targets in terms of the center location error and the success rate,
even though there are several types of appearance changes.
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(”CET”) obtains better or comparable performance in all the subsets
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Fig. 5. Center location errors comparing CET with SPOT and RET. (a) represents
the comparison between CET and its base tracker SPOT; (b) denotes the comparison
between CET and the latest state-of-the-art ensemble tracker RET
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Fig. 6. Success rate based on overlap rate comparing CET with SPOT and RET. (a)
represents the comparison between CET and its base tracker SPOT; (b) denotes the
comparison between CET and the latest state-of-the-art ensemble tracker RET
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Table 1. Comparison of tracking results. The numbers indicate the average center
location errors in pixels. The bold, underlined, and italic represent the best, the second,
and the third best, respectively. Other numbers in () indicate the percent of successfully
tracked frames, where tracking is success when the overlap ratio between the predicted
bounding box Ap and ground truth bounding box Ag is over than 0.5:

Ap∩Ag

Ap∪Ag

> 0.5.

TLD[32] MIL[5] VTD[30] Struck[7] PT[33] SPOT[24] RET[9] CET

Boy 5(94) 13(39) 8(79) 4(98) 8(78) 238(0.3) 6 (88 ) 8(91 )

Car4 13(79) 51(28) 37(35) 9 (40 ) 8(40 ) 12(38) 6(99) 12(38)

David 5(97) 24(16) 12(68) 10(57) 47(71) 7 (62 ) 29(7) 5(80)

Sylv. 7(93) 12(74) 20(80) 6(93) 6(95) 9(88) 39(14) 8 (90)

Fish 31(47) 72(24) 32(50) 7(78) 8 (80) 4(83) 35(26) 4(83)

Trellis 7 (96 ) 27(23) 17(64) 3(100) 6(100) 7 (100) 33(23) 7 (100)

Singer1 8 (99) 16(28) 4(43 ) 15(30) 31(22) 12(28) 5(89) 10(28)

Coke 25(29) 70(3) 69(14) 12(94) 15 (71 ) 49(17) 40(35) 14(72)

Dudek 18(84) 18(86) 10(100) 12(98) 15(94) 13 (97 ) 140(14) 14(98)

Couple 3(100) 35(67) 104(8) 11(54) 21(36) 9(81) 4(57) 6 (58 )

Jogging 7(97) 95(23) 83(22) 62(23) 7(88) 75(16) 23(26) 7(75 )

F.Face 41(57) 63(54) 46(71 ) 23(67) 22(86) 31 (61) 75(57) 35(60)

David3 208(10) 30(68) 67(48) 107(34) 7(89) 8 (98) 13(80 ) 6(62)

Suv 13(84 ) 82(13) 57(55) 50(58) 35(53) 10 (95) 8(7) 8(96)

M.Bike 216(26) 73(58) 10 (100) 9(86) 9(100) 198(1) 18(54) 10(93)

Lem. 16 (59) 171(17) 79(49) 38(64 ) 136(45) 8(87) 20(79) 7(87)

Liquor 38(58) 142(20) 60(58) 91(41) 95(34) 8(97) 9 (93 ) 7(98)

F.Occ1 27(83) 37(62) 20(93) 19 (100) 17(100) 17(100) 12(100) 17(100)

F.Occ2 12(83) 20(68) 8(99) 6(100) 6(100) 10(92) 11(79) 9(96 )

Tiger1 50(46) 37(37) 107(12) 129(18) 33(49) 16(93) 9(97) 16(89 )

Tiger2 37(18) 30(36) 41(17) 22 (65 ) 48(29) 33(73) 12(92) 18(76)

Deer 31(73 ) 101(13) 135(4) 5(100) 24(38) 10 (99) 97(3) 7(100)

Comparison of Competing Tracking Algorithms. Although SPOT is
our base tracker, we can get better performance in most video sequences through
introducing the hidden clustering information by sequential clustering method
(see Fig. 5(a) and Fig. 6(a)). RET exploits the non-stationary distribution of
weight vector in parameter space to ensemble and get good performance. Our
tracker CET adopts the sequential clustering method to utilize the hidden non-
stationary distribution of parameter and object appearance. Through Fig. 5(b)
and Fig. 6(b), we also get the better performance comparing with RET. We
compare the proposed tracking algorithm with nine state-of-the-art tracking al-
gorithms, Table 1 summarises the average center location error performance and
success rate of the compared tracking algorithms over the 22 sequences. From
the experimental results, we see that our tracking algorithm obtains the best
performance on ten sequences in the terms of the center location error or the
success rate, seven sequences the second best, four sequences the third best. Fig.
4 shows that our method can handle occlusion, illumination and out-of-view well.
The robustness of our CET tracker lies in the object-part structure which are
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discriminatively trained online to account for the variations, the historical hid-
den structure information in parameter space of base tracker and in the object
appearance space of the historical predicted object.

5 Conclusion

In this paper, we deal with the tracking problem about decision ambiguities by
fusing object-part predictor, parameter clustered predictor and feature clustered
predictor together. Object-part predictor exploits the structure between object
and its parts which is effective to object deformative appearance changes. Pa-
rameter clustered predictor utilizes temporal hidden group structure in object
parameter space in some extent. Feature clustered predictor guarantees the ob-
ject from the distracters in parameter space and get the better performance.
Then we propose a tracker, clustering ensemble tracking (CET), based on struc-
ture learning and sequential clustering framework to avoid the drifting problem.
Extensive experiments show that our algorithm is robust to occlusion, illumina-
tion and out-of-view because different predictors have different properties. The
accuracy of CET is superior or competitive to several state-of-the-art tracking
algorithms in a more effective way.
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